Dietary zinc may attenuate heat-induced testicular oxidative stress in mice via up-regulation of Cu-Zn SOD.

نویسندگان

  • Y Cao
  • Y S Li
  • Z J Li
  • F Wang
  • C M Li
چکیده

Zinc (Zn) is important for male mammalian reproduction. In this study, we sought to clarify the role of Zn in heat-induced testicular damage in mice. Eighteen mice were divided into either control (con), heat (heat) and heat plus Zn (H+Zn) treatment groups, and fed diets containing 60 (con and heat groups) or 300 (H+Zn group) mg/kg Zn sulfate for one month. Mice in the con group were then maintained at 25°C, while mice in heat and H+Zn groups were exposed to 40°C for 2 h daily, for eight days. Mouse testes and serum from each animal were analyzed. Zinc levels in serum and testes were positively correlated to Zn feed concentrations. Mice in the heat group had higher testes index than those in the other two groups (7.22 ± 0.75, heat; 4.92 ± 0.20, con; 4.80 ± 0.30 mg/g, H+Zn; P < 0.05). Testicular antioxidant status showed malondialdehyde levels in heat group mice were increased compared to control mice (2.34 ± 0.15 versus 1.55 ± 0.23 nmol/mg protein; P < 0.05), and Cu-Zn superoxide dismutase (SOD) level differed between heat and H+Zn groups (14.04 ± 0.74 versus 18.27 ± 1.53 U/mg protein; P < 0.05). Testicular Cu-Zn SOD protein expression levels were significantly lower in the heat than in the control group (0.30 ± 0.11 versus 1.22 ± 0.13; P < 0.05). These results suggest that dietary Zn may elevate the activity and protein concentration of Cu-Zn SOD, to attenuate testicular oxidative stress induced by heat exposure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cellular response of antioxidant metalloproteins in Cu/Zn SOD transgenic mice exposed to hyperoxia.

Ceruloplasmin, metallothionein, and ferritin are metal-binding proteins with potential antioxidant activity. Despite evidence that they are upregulated in pulmonary tissue after oxidative stress, little is known regarding their influence on trace metal homeostasis. In this study, we have used copper- and zinc-containing superoxide dismutase (Cu/Zn SOD) transgenic-overexpressing and gene knockou...

متن کامل

Oxidative stress in the brain tissue of laboratory mice with acute post insulin hypoglycemia.

Malondialdehyde (MDA), Cu,Zn-superoxide dismutase (Cu,Zn-SOD) and selenium-dependent glutathione peroxidase (GSPHx) are currently considered to be basic markers of oxidative stress. MDA is one of the end-products of the peroxidation of membrane lipids, whereas enzymes Cu,Zn-SOD and GSHPx belong to the natural antioxidants. The role of oxygen free radicals in the pathogenesis of many diseases is...

متن کامل

Overexpressing the Sedum alfredii Cu/Zn Superoxide Dismutase Increased Resistance to Oxidative Stress in Transgenic Arabidopsis

Superoxide dismutase (SOD) is a very important reactive oxygen species (ROS)-scavenging enzyme. In this study, the functions of a Cu/Zn SOD gene (SaCu/Zn SOD), from Sedum alfredii, a cadmium (Cd)/zinc/lead co-hyperaccumulator of the Crassulaceae, was characterized. The expression of SaCu/Zn SOD was induced by Cd stress. Compared with wild-type (WT) plants, overexpression of SaCu/Zn SOD gene in ...

متن کامل

Tolerance of Spermatogonia to Oxidative Stress Is Due to High Levels of Zn and Cu/Zn Superoxide Dismutase

BACKGROUND Spermatogonia are highly tolerant to reactive oxygen species (ROS) attack while advanced-stage germ cells such as spermatozoa are much more susceptible, but the precise reason for this variation in ROS tolerance remains unknown. METHODOLOGY/PRINCIPAL FINDINGS Using the Japanese eel testicular culture system that enables a complete spermatogenesis in vitro, we report that advanced-s...

متن کامل

Zinc Supplementation against Eimeria acervulina-Induced Oxidative Damage in Broiler Chickens

This study was undertaken to determine the dietary supplements of Zn containing diet on the antioxidant status in chickens experimentally infected with Eimeria acervulina. The antioxidant status was monitored via determination of MDA concentrations and erythrocyte SOD and CAT activities, as well as vitamin E, vitamin C, Cu, and Zn in liver, muscle, and serum. The results showed increased MDA (P...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics and molecular research : GMR

دوره 14 4  شماره 

صفحات  -

تاریخ انتشار 2015